Código De Media Móvil Exponencial
MetaTrader 4 - Indicadores Promedios móviles, indicador MA para MetaTrader 4 El Indicador técnico de media móvil muestra el valor medio del precio del instrumento durante un cierto período de tiempo. Cuando se calcula la media móvil, se calcula la media del precio del instrumento para este período de tiempo. A medida que el precio cambia, su promedio móvil aumenta o disminuye. Hay cuatro tipos diferentes de promedios móviles: Simple (también conocido como aritmética), exponencial, suavizado y lineal ponderado. Los promedios móviles se pueden calcular para cualquier conjunto de datos secuenciales, incluyendo precios de apertura y cierre, precios más altos y más bajos, volumen de operaciones o cualquier otro indicador. A menudo es el caso cuando se usan promedios móviles dobles. Lo único en que los promedios móviles de diferentes tipos divergen considerablemente entre sí, es cuando los coeficientes de peso, que se asignan a los últimos datos, son diferentes. En caso de que se trate de media móvil simple, todos los precios del período de tiempo en cuestión, son iguales en valor. Los promedios móviles exponenciales y lineales ponderan más valor a los últimos precios. La forma más común de interpretar el precio promedio móvil es comparar su dinámica con la acción del precio. Cuando el precio del instrumento sube por encima de su media móvil, aparece una señal de compra, si el precio cae por debajo de su media móvil, lo que tenemos es una señal de venta. Este sistema de comercio, que se basa en la media móvil, no está diseñado para proporcionar la entrada en el mercado justo en su punto más bajo, y su salida a la derecha en el pico. Permite actuar de acuerdo con la siguiente tendencia: comprar poco después de que los precios lleguen al fondo, y venderlo poco después de que los precios hayan alcanzado su pico. Cálculo Promedio móvil simple (SMA) Simple, en otras palabras, el promedio móvil aritmético se calcula sumando los precios del cierre del instrumento durante un cierto número de períodos individuales (por ejemplo, 12 horas). Este valor se divide entonces por el número de tales períodos. SMA SUM (CLOSE, N) / N Donde: N es el número de períodos de cálculo. Promedio móvil exponencial (EMA) El promedio móvil suavizado exponencialmente se calcula sumando la media móvil de una determinada proporción del precio de cierre actual al valor anterior. Con los promedios móviles suavizados exponencialmente, los últimos precios son de mayor valor. La media móvil exponencial del P por ciento se verá así: Donde: CERRAR (i) el precio del cierre del período actual EMA (i-1) Promedio Movimiento Exponencial del cierre del período anterior P el porcentaje de usar el valor del precio. Promedio móvil suavizado (SMMA) El primer valor de este promedio móvil suavizado se calcula como la media móvil simple (SMA): SUM1 SUM (CLOSE, N) Las segundas y siguientes medias móviles se calculan según esta fórmula: Donde: SUM1 es el Suma total de los precios de cierre para N periodos SMMA1 es el promedio móvil suavizado de la primera barra SMMA (i) es el promedio móvil suavizado de la barra actual (excepto el primero) CLOSE (i) es el precio actual de cierre N es el Período de suavizado. Promedio móvil ponderado lineal (LWMA) En el caso de la media móvil ponderada, los datos más recientes tienen más valor que los datos más antiguos. La media móvil ponderada se calcula multiplicando cada uno de los precios de cierre dentro de la serie considerada, por un cierto coeficiente de ponderación. Suma (i, N) / SUM (i, N) Donde: SUM (i, N) es la suma total de los coeficientes de peso. Los promedios móviles también pueden aplicarse a los indicadores. Es ahí donde la interpretación de las medias móviles de los indicadores es similar a la interpretación de los promedios móviles de los precios: si el indicador sube por encima de su media móvil, es probable que continúe el movimiento del indicador ascendente: si el indicador cae por debajo de su promedio móvil, Significa que es probable que siga bajando. Estos son los tipos de promedios móviles en el gráfico: Promedio móvil simple (SMA) Promedio móvil exponencial (EMA) Promedio móvil suavizado (SMMA) Promedio móvil ponderado lineal (LWMA) Tengo básicamente una matriz de valores como este: Simplificado, estoy recolectando 1 valor por milisegundo en mi código real y necesito procesar la salida en un algoritmo que escribí para encontrar el pico más cercano antes de un punto en el tiempo. Mi lógica falla porque en mi ejemplo anterior, 0.36 es el pico real, pero mi algoritmo miraría hacia atrás y vería el último número 0.25 como el pico, pues hay una disminución a 0.24 antes de él. El objetivo es tomar estos valores y aplicarles un algoritmo que los suavice un poco para que tenga valores más lineales. (Es decir: la identificación como mis resultados para ser curvy, no jaggedy) se me ha dicho que aplique un filtro de media móvil exponencial a mis valores. ¿Cómo puedo hacer esto? Es realmente difícil para mí para leer las ecuaciones matemáticas, trato mucho mejor con el código. ¿Cómo procesar los valores en mi matriz, aplicando un cálculo de promedio móvil exponencial para igualarlos? Preguntado Feb 8 12 at 20:27 Para calcular una media móvil exponencial. Usted necesita mantener un poco de estado alrededor y usted necesita un parámetro de ajuste. Esto requiere una pequeña clase (asumiendo que está usando Java 5 o posterior): Instantiate con el parámetro de decadencia que desea (puede tomar la afinación debe estar entre 0 y 1) y luego use average () para filtrar. Al leer una página sobre alguna recurrencia matemática, todo lo que realmente necesita saber al convertirlo en código es que a los matemáticos les gusta escribir índices en matrices y secuencias con subíndices. Sin embargo, la EMA es bastante simple, ya que sólo es necesario recordar un valor antiguo que no requiere arrays de estado complicado. Respondió 8 Feb a las 20:42 TKKocheran: Bastante. No es bueno cuando las cosas pueden ser simples (si comienza con una nueva secuencia, obtenga un nuevo averager). Observe que los primeros términos de la secuencia promediada saltarán alrededor de un bit debido a efectos de límite, pero obtendrá aquellos con otras medias móviles también. Sin embargo, una buena ventaja es que usted puede envolver la lógica del promedio móvil en el averager y experimentar sin molestar el resto de su programa demasiado. Ndash Donal Fellows Feb 9 12 en 0:06 Estoy teniendo un rato difícil entender sus preguntas, pero intentaré contestar de todos modos. 1) Si su algoritmo encontró 0.25 en lugar de 0.36, entonces es incorrecto. Está mal porque asume un aumento o una disminución monotónica (que siempre sube o baja siempre). A menos que usted promedio TODOS sus datos, sus puntos de datos --- como usted los presenta --- son no lineales. Si realmente desea encontrar el valor máximo entre dos puntos en el tiempo, corte su matriz de tmin a tmax y busque el máximo de ese subarray. 2) Ahora, el concepto de promedios móviles es muy simple: imagina que tengo la siguiente lista: 1.4, 1.5, 1.4, 1.5, 1.5. Puedo suavizarlo tomando el promedio de dos números: 1.45, 1.45, 1.45, 1.5. Observe que el primer número es el promedio de 1,5 y 1,4 (segundo y primeros números), la segunda (nueva lista) es el promedio de 1,4 y 1,5 (tercera y segunda lista antigua) la tercera (nueva lista) el promedio de 1,5 y 1,4 (Cuarto y tercero), y así sucesivamente. Podría haberlo hecho el período tres o cuatro, o n. Observe cómo los datos son mucho más suaves. Una buena manera de ver los promedios móviles en el trabajo es ir a Google Finance, seleccionar una acción (probar Tesla Motors bastante volátil (TSLA)) y hacer clic en technicals en la parte inferior de la tabla. Seleccione Promedio móvil con un período determinado y Promedio móvil exponencial para comparar sus diferencias. La media móvil exponencial es sólo otra elaboración de esto, pero los pesos de los datos más antiguos menos de los nuevos datos de esta es una manera de sesgar el alisamiento hacia la parte posterior. Por favor, lea la entrada de Wikipedia. Por lo tanto, esto es más un comentario que una respuesta, pero el pequeño cuadro de comentarios era sólo a pequeño. Buena suerte. Si usted está teniendo apuro con la matemáticas, usted podría ir con una media móvil simple en vez de exponencial. Así que la salida que obtendrías serían los últimos x términos divididos por x. Pseudocódigo no comprobado: Tenga en cuenta que tendrá que manejar las partes inicial y final de los datos, ya que claramente no puede medirse los últimos 5 términos cuando está en su segundo punto de datos. Además, hay maneras más eficientes de calcular este promedio móvil (suma suma - más reciente más reciente), pero esto es para obtener el concepto de lo que está sucediendo a través de. Cómo calcular EMA en Excel Aprenda a calcular el promedio móvil exponencial en Excel y VBA y obtenga una hoja de cálculo gratuita conectada a la Web. La hoja de cálculo recupera datos de acciones de Yahoo Finance, calcula EMA (en la ventana de tiempo escogida) y traza los resultados. El enlace de descarga está en la parte inferior. El VBA se puede ver y editar it8217s completamente gratis. Pero primero desmaye por qué EMA es importante para los comerciantes técnicos y analistas de mercado. Las cartas históricas del precio de la acción se contaminan a menudo con mucho ruido de alta frecuencia. Esto a menudo oscurece las principales tendencias. Medias móviles ayudan a suavizar estas fluctuaciones menores, dándole una mayor visión de la dirección general del mercado. El promedio móvil exponencial da mayor importancia a los datos más recientes. Cuanto mayor sea el período de tiempo, menor será la importancia de los datos más recientes. EMA se define por esta ecuación. El precio de today8217s (multiplicado por un peso) y el EMA de yesterday8217s (multiplicado por 1-peso) Usted necesita kickstart el cálculo EMA con un EMA inicial (EMA 0). Por lo general, el gráfico anterior da a la EMA de Microsoft entre el 1 de enero de 2013 y el 14 de enero de 2014. Los comerciantes técnicos a menudo utilizan el cruce de dos promedios móviles 8211 uno con una escala de tiempo corta Y otro con una larga escala de tiempo 8211 para generar señales de compra / venta. A menudo se usan promedios móviles de 12 y 26 días. Cuando la media móvil más corta se eleva por encima de la media móvil más larga, el mercado está tendencia hacia arriba es una señal de compra. Sin embargo, cuando los promedios móviles más cortos caen por debajo de la media móvil larga, el mercado está cayendo esta es una señal de venta. Let8217s primero aprender a calcular EMA utilizando funciones de hoja de cálculo. Después de que we8217ll descubrir cómo utilizar VBA para calcular EMA (y automáticamente trazar gráficos) Calcular EMA en Excel con las funciones de la hoja de cálculo Paso 1. Let8217s decir que queremos calcular el 12-día EMA de Exxon Mobil8217s precio de las acciones. Primero necesitamos obtener precios históricos de acciones 8211 que usted puede hacer eso con este descargador de cotizaciones de acciones a granel. Paso 2 . Calcule el promedio simple de los primeros 12 precios con la función Average () de Excel8217s. En el screengrab abajo, en la celda C16 tenemos la fórmula AVERAGE (B5: B16) donde B5: B16 contiene los primeros 12 precios de cierre. Paso 3. Justo debajo de la celda utilizada en el Paso 2, ingrese la fórmula EMA arriba. Allí lo tiene You8217ve calculó exitosamente un indicador técnico importante, EMA, en una hoja de cálculo. Calcule EMA con VBA Ahora let8217s mecanizar los cálculos con VBA, incluyendo la creación automática de parcelas. I won8217t mostrarle el VBA completo aquí (it8217s disponible en la hoja de cálculo a continuación), pero we8217ll discutir el código más crítico. Paso 1. Descargue las cotizaciones históricas de las acciones de su ticker de Yahoo Finance (usando archivos CSV), y cargarlas en Excel o usar la VBA en esta hoja de cálculo para obtener cotizaciones históricas directamente en Excel. Sus datos pueden ser algo como esto: Paso 2. Aquí es donde necesitamos ejercitar unos braincells 8211 necesitamos implementar la ecuación EMA en VBA. Podemos usar el estilo R1C1 para introducir programáticamente fórmulas en celdas individuales. Examine el fragmento de código a continuación. EMAWindow es una variable que es igual a la ventana de tiempo deseada numRows es el número total de puntos de datos 1 (el 8220 18221 se debe a que we8217re suponiendo que los datos de stock reales comienzan en la fila 2) EMA se calcula en la columna h Asumiendo que EMAWindow 5 y numrows 100 (es decir, hay 99 puntos de datos) la primera línea coloca una fórmula en la celda h6 que calcula el promedio aritmético de los primeros 5 puntos de datos históricos La segunda línea coloca fórmulas en celdas h7: h100 que calcula la EMA de los 95 restantes Puntos de datos Paso 3 Esta función VBA crea una trama del precio de cierre y EMA. Gran trabajo en gráficos y explicaciones. Tengo una pregunta sin embargo. Si cambio la fecha de inicio a un año más tarde y miro los datos recientes de EMA, es notablemente diferente que cuando utilizo el mismo período EMA con una fecha de inicio anterior para la misma referencia de fecha reciente. Es eso lo que esperas. Hace que sea difícil ver los gráficos publicados con EMAs mostrados y no ver el mismo gráfico. Shivashish Sarkar dice: Hola, estoy utilizando tu calculadora EMA y realmente aprecio. Sin embargo, he notado que la calculadora no es capaz de trazar los gráficos para todas las empresas (muestra error de tiempo de ejecución 1004). ¿Puede crear una edición actualizada de su calculadora en la que se incluirán nuevas empresas? Leave a Reply Cancelar respuesta Like the Free Spreadsheets Master Base de conocimientos
Comments
Post a Comment