Filtro Promedio Móvil 3db


Tengo que diseñar un filtro de media móvil que tiene una frecuencia de corte de 7,8 Hz. He utilizado filtros de media móvil antes, pero por lo que estoy enterado, el único parámetro que se puede alimentar es el número de puntos que se promedian. ¿Cómo puede esto relacionarse con una frecuencia de corte? El inverso de 7,8 Hz es de 130 ms, e Im trabajando con datos que se muestrean a 1000 Hz. ¿Esto implica que debo usar un tamaño de ventana de filtro de media móvil de 130 muestras, o hay algo más que falta aquí pidió Jul 18 13 en 9:52 El filtro de media móvil es el filtro utilizado en el dominio de tiempo para eliminar El ruido añadido y también para el propósito de suavizado, pero si utiliza el mismo filtro de media móvil en el dominio de frecuencia para la separación de frecuencia, el rendimiento será peor. Por lo que en ese caso el uso de filtros de dominio de frecuencia ndash user19373 Feb 3 at 5:53 El filtro de media móvil (a veces conocido coloquialmente como un filtro boxcar) tiene una respuesta de impulso rectangular: O, afirmó de manera diferente: Recordando que una respuesta de frecuencia de sistemas de tiempo discreto Igual a la transformada de Fourier de tiempo discreto de su respuesta de impulso, podemos calcularlo como sigue: Lo que más le interesó a su caso es la respuesta de magnitud del filtro, H (omega). Utilizando un par de manipulaciones simples, podemos obtener que en una forma más fácil de comprender: Esto puede no parecer más fácil de entender. Sin embargo, debido a la identidad de Eulers. Recuerde que: Por lo tanto, podemos escribir lo anterior como: Como he dicho antes, lo que realmente te preocupa es la magnitud de la respuesta de frecuencia. Por lo tanto, podemos tomar la magnitud de lo anterior para simplificarlo más: Nota: Somos capaces de eliminar los términos exponenciales porque no afectan a la magnitud del resultado e 1 para todos los valores de omega. Puesto que xy xy para dos complejos finitos xyy, podemos concluir que la presencia de los términos exponenciales no afecta a la respuesta de magnitud global (en cambio, afectan a la respuesta de fase de los sistemas). La función resultante dentro de los soportes de magnitud es una forma de un núcleo de Dirichlet. A veces se denomina función de sinc periódica, porque se asemeja a la función sinc en apariencia, pero es periódica. De todos modos, ya que la definición de la frecuencia de corte es un poco underspecified (-3 dB punto -6 dB punto primer sidelobe nulo), puede utilizar la ecuación anterior para resolver lo que necesita. Específicamente, puede hacer lo siguiente: Establezca H (omega) en el valor correspondiente a la respuesta del filtro que desea en la frecuencia de corte. Ajuste omega igual a la frecuencia de corte. Para asignar una frecuencia de tiempo continuo al dominio de tiempo discreto, recuerde que omega 2pi frac, donde fs es su tasa de muestreo. Encuentre el valor de N que le da el mejor acuerdo entre los lados izquierdo y derecho de la ecuación. Que debe ser la longitud de su promedio móvil. Si N es la longitud de la media móvil, entonces una frecuencia de corte aproximada F (válida para N gt 2) en la frecuencia normalizada Ff / fs es: La inversa de esta es Esta fórmula es asintóticamente correcta para N grandes, y tiene alrededor de 2 para N2 y menos de 0,5 para N4. PD Después de dos años, aquí finalmente lo que fue el enfoque seguido. El resultado se basó en aproximar el espectro de amplitud de MA alrededor de f0 como una parábola (serie de segundo orden) de acuerdo con MA (Omega) aproximadamente 1 (frac-fra) Omega2 que se puede hacer más exacta cerca del cruce cero de MA (Omega) Frac por multiplicar Omega por un coeficiente obteniendo MA (Omega) aprox. 10.907523 (frac - frac) Omega2 La solución de MA (Omega) - frac 0 da los resultados anteriores, donde 2pi F Omega. Todo lo anterior se refiere a la frecuencia de corte -3dB, el sujeto de este post. A veces, aunque es interesante obtener un perfil de atenuación en banda de parada que es comparable con el de un filtro de paso bajo IIR de primer orden (LPF de un solo polo) con una frecuencia de corte de -3 dB determinada (un LPF de este tipo también se llama integrador con fugas, Teniendo un poste no exactamente en DC pero cerca de él). De hecho tanto el MA como el LPF de primer orden IIR tienen una pendiente de -20dB / década en la banda de parada (se necesita un N mayor que el usado en la figura, N32, para ver esto), mientras que MA tiene nulos espectrales en Fk / N y un 1 / f evelope, el filtro IIR sólo tiene un perfil 1 / f. Si se desea obtener un filtro MA con capacidades de filtrado de ruido similares a las de este filtro IIR, y coincide con las frecuencias de corte de 3dB para que sean las mismas, al comparar los dos espectros, se daría cuenta de que la ondulación de banda de parada del filtro MA termina 3dB por debajo de la del filtro IIR. Para obtener la misma ondulación de banda de parada (es decir, la misma atenuación de potencia de ruido) que el filtro IIR, las fórmulas se pueden modificar de la siguiente manera: Encontré de nuevo el script de Mathematica donde calculé el corte para varios filtros, incluyendo el MA. El resultado se basó en aproximar el espectro de MA alrededor de f0 como parábola según MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) aproximadamente N1 / 6F2 (N-N3) pi2. Y derivando el cruce con 1 / sqrt desde allí. La respuesta de frecuencia de un sistema LTI es la DTFT de la respuesta de impulso. La respuesta de impulso de una media móvil L-media es. Dado que el filtro de media móvil es FIR, la frecuencia Respuesta se reduce a la suma finita Podemos utilizar la identidad muy útil para escribir la respuesta de frecuencia como donde hemos dejado ae menos jomega. N 0 y M L menos 1. Podemos estar interesados ​​en la magnitud de esta función para determinar qué frecuencias pasan a través del filtro sin atenuación y cuáles son atenuadas. A continuación se muestra un gráfico de la magnitud de esta función para L 4 (rojo), 8 (verde) y 16 (azul). El eje horizontal varía de cero a pi radianes por muestra. Observe que en los tres casos, la respuesta de frecuencia tiene una característica de paso bajo. Un componente constante (frecuencia cero) en la entrada pasa a través del filtro sin atenuación. Ciertas frecuencias más altas, como pi / 2, son completamente eliminadas por el filtro. Sin embargo, si la intención era diseñar un filtro de paso bajo, entonces no lo hemos hecho muy bien. Algunas de las frecuencias más altas se atenúan sólo por un factor de 1/10 (para la media móvil de 16 puntos) o 1/3 (para la media móvil de cuatro puntos). Podemos hacer mucho mejor que eso. La gráfica anterior se creó mediante el siguiente código Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 (1-exp (-iomega8)) ./ (1-exp (-iomega)) diagrama (omega , Abs (H4) abs (H8) abs (H16) eje (0, pi, 0, 1) Copyright copy 2000- - Universidad de California, BerkeleyThe Scientist and Engineers Guide to Digital Signal Processing Por Steven W. Smith, RE. En un mundo perfecto, los diseñadores de filtros sólo tendrían que ocuparse de la información codificada en el dominio del tiempo o en el dominio de la frecuencia, pero nunca una mezcla de los dos en la misma señal. Desafortunadamente, hay algunas aplicaciones donde ambos dominios son simultáneamente importantes. Por ejemplo, las señales de televisión caen en esta categoría desagradable. La información de vídeo se codifica en el dominio de tiempo, es decir, la forma de la forma de onda corresponde a los patrones de brillo en la imagen. Sin embargo, durante la transmisión, la señal de vídeo se trata según su composición de frecuencia, tal como su anchura de banda total, cómo se añaden las ondas portadoras para el sonido y el color del amplificador, restauración de amplificación de eliminación del componente de CC, etc. Se entiende mejor en el dominio de la frecuencia, incluso si la información de las señales está codificada en el dominio del tiempo. Por ejemplo, el monitor de temperatura en un experimento científico podría estar contaminado con 60 hercios de las líneas eléctricas, 30 kHz de una fuente de alimentación de conmutación, o 1320 kHz de una emisora ​​local de radio AM. Los familiares del filtro de media móvil tienen un mejor rendimiento en el dominio de la frecuencia, y pueden ser útiles en estas aplicaciones de dominio mixto. Los filtros de media móvil de paso múltiple implican pasar la señal de entrada a través de un filtro de media móvil dos o más veces. La figura 15-3a muestra el núcleo del filtro resultante de una, dos y cuatro pasadas. Dos pasadas son equivalentes a usar un núcleo de filtro triangular (un núcleo de filtro rectangular convolucionado con sí mismo). Después de cuatro o más pases, el kernel de filtro equivalente parece un Gaussiano (recuerde el Teorema del Límite Central). Como se muestra en (b), múltiples pasadas producen una respuesta de paso en forma de s, en comparación con la línea recta de la única pasada. Las respuestas de frecuencia en (c) y (d) están dadas por la Ec. 15-2 multiplicado por sí mismo para cada pase. Es decir, cada vez que la convolución del dominio da como resultado una multiplicación de los espectros de frecuencia. La figura 15-4 muestra la respuesta en frecuencia de otros dos familiares del filtro de media móvil. Cuando un Gaussiano puro es usado como un núcleo de filtro, la respuesta de frecuencia es también Gaussiana, como se discutió en el Capítulo 11. El Gaussiano es importante porque es la respuesta de impulso de muchos sistemas naturales y artificiales. Por ejemplo, un breve impulso de luz que entra en una línea de transmisión de fibra óptica larga saldrá como un pulso gaussiano, debido a las diferentes trayectorias tomadas por los fotones dentro de la fibra. El kernel de filtro gaussiano también se utiliza ampliamente en el procesamiento de imágenes porque tiene propiedades únicas que permiten convoluciones bidimensionales rápidas (véase el Capítulo 24). La segunda respuesta de frecuencia en la Fig. 15-4 corresponde a usar una ventana de Blackman como un núcleo de filtro. (El término ventana no tiene significado aquí es simplemente parte del nombre aceptado de esta curva). La forma exacta de la ventana de Blackman se da en el Capítulo 16 (Ec. 16-2, Fig. 16-2) sin embargo, se parece mucho a un Gaussiano. ¿Cómo son estos parientes del filtro de media móvil mejor que el filtro de media móvil en sí Tres maneras: En primer lugar, y lo más importante, estos filtros tienen mejor atenuación de banda de detención que el filtro de media móvil. En segundo lugar, los granos de filtro se estrechan hasta una amplitud más pequeña cerca de los extremos. Recuerde que cada punto en la señal de salida es una suma ponderada de un grupo de muestras de la entrada. Si el núcleo del filtro se estrecha, las muestras en la señal de entrada que están más alejadas reciben menos peso que las cercanas. En tercer lugar, las respuestas de paso son curvas suaves, en lugar de la línea recta brusca de la media móvil. Estos últimos dos son generalmente de beneficio limitado, aunque usted puede ser que encuentre aplicaciones donde son ventajas genuinas. El filtro de media móvil y sus familiares son todos aproximadamente iguales en la reducción del ruido aleatorio mientras que mantiene una respuesta aguda del paso. La ambigüedad radica en cómo se mide el tiempo de subida de la respuesta escalonada. Si el tiempo de subida se mide de 0 a 100 del paso, el filtro de media móvil es lo mejor que puede hacer, como se mostró anteriormente. En comparación, medir el tiempo de subida de 10 a 90 hace que la ventana de Blackman sea mejor que el filtro de media móvil. El punto es, esto es sólo disputas teóricas considerar estos filtros iguales en este parámetro. La mayor diferencia entre estos filtros es la velocidad de ejecución. Utilizando un algoritmo recursivo (descrito a continuación), el filtro de media móvil funcionará como un rayo en su computadora. De hecho, es el filtro digital más rápido disponible. Múltiples pases del promedio móvil serán correspondientemente más lentos, pero aún así muy rápidos. En comparación, los filtros Gaussiano y Blackman son extremadamente lentos, porque deben usar convolución. Piense un factor de diez veces el número de puntos en el núcleo del filtro (basado en la multiplicación es aproximadamente 10 veces más lento que la adición). Por ejemplo, espere que un Gaussiano de 100 puntos sea 1000 veces más lento que un promedio móvil usando recursión.

Comments

Popular posts from this blog

Bandas De Bollinger Para La Divisa

Forex Trading Gratis De Vídeo De Formación

Forex Mustafa